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y c™(s) n times continuously differentiable on §
P pressure

, U component velocity in x-direction
. v component velocity in y-~direction
! 801 3%[ Max? + 2%[ 1/9%[ 1/3y*




IR —— |
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// SUMMARY

‘4 For more than the last 20 years there has been a concerted effort to
solﬁe the stationary Navier-Stokes equations; however, this has only been suc-
cessful for a few special cases of primarily academic interest. An alternative
approach has been to solve the equations numerically, and then compare the
results with experiment. On occasion, such comparisons are in good agreement.
However, such results are of dubious value since one has no a-priori way of
knowing the relevance of such results until they are explicitly compared

) against experiment. Therefore, it would seem reasonable to conclude that the
present approaches to solving the Navier-Stokes equations are of limited
value. Accordingly, it is the purpose of this paper to show that there does,
indeed, exist an equivalent representation of the problem that has significant
potential in solving such problems. This is due to the fact that this equiva-

| lent representation of the problem consists of a sequence of Fredholm Integral

’ Equations of the second kind, and the solving of this type of problem is very
well developed. In addition, for the problem in this form, there is an excel-
lent chance to also determine explicit error estimates, since one would now be
dealing with bounded linear operators, rather than unboundeikl

INTRODUCTION /

4 Ideally, one would like to obtain a numerical solution to the Stationary
Navier-Stokes problem that is within some prescribed degree of accuracy of the
true solution. Unfortunately, it is not possible to accomplish this objective
by just applying some existing numerical technique directly to the Stationary
Navier-Stokes equations, since error analysis for nonlinear equations is, for

. all practical purposes, nonexistent. However, since it is possible to replace
the Stationary Navier-Stokes problem by an equivalent sequence of linear
partial differential equations (ref. 1), providing some rather general condi-
tions can be met, it is at least theoretically possible to obtain error esti-
mates due to the vast wealth of knowledge known about linear equations. How-
ever, even though attaining such error estimates is within the realm of

possibility, one should not be misled into thinking that such a task is a

small undertaking, for this is most certainly not the case. However, the




chances of someone accomplishing this task are significantly greater if the
basic sequential problem is transformed into an equivalent form that is more f
suitable to error analysis. Accordingly, in this paper it will be proven that
the said sequential problem can be transformed into a form that has signifi-
cantly greater changes of yielding explicit error estimages.

GENERAL DEVELOPMENT

The Navier-Stokes equations are given by

uy, +vu_+p - vAu+ f(x,y) =0
X yoox in S (1)
uv, + Wy + Py =V v + £,(x,y) = 0
l with boundary conditions
u(aS) = -bz(as) » V(as) = b1 »
where S 1is a two dimensional Green's domain with surface 3§,
f,(x,y) € ci(s) , and fz(x,y) € cl(s) ,
i or equivalently,
vady + wy wa - wx Awy + fly - fzx = 0 in S (2)

wx(BS) =b, » wy(as) =b,
Let

vAAy + Ay, - Ay + £, - f
v wy Ve T Vg vy 1y 2,

be denoted by P(y). Hence (2) can be expressed by

R

P(y) =0, v, (35) =b; , v, (38) =D,

where P can be interpreted as a mapping from Cc“(s) into C°(S). As demon-
strated in reference 1, solving (2) is equivalent to solving the sequence of
equations .

PG ) + P ),y - ¥) =0 -

3Wn 3Wn (3)
% ’s b1 » ?Sr = b2 for n=20,1,2, . . .,

9s




providing certain conditions are satisfied (ref. 1), (i.e., primarily that
V,» the initial guess is reasonably good), for further insight into the sig-
nificant latitude on y,, the reader should consult reference 2.

P(vo)i J = vaal 14wy a0 1 + 8w, [ ), - av, [ ), ~w, al]
y x Oy y X Ox

y y
Equivalent to equation (3) is the problem
~ 3$n .3@n
P(Wn)"'P'(Wn)Wn'O » E(_ =0, _a'y_-o », n=20,1,2, . . ., (4)
s

by letting

Yo ® Vo4 " ¥

n
Now consider (4) under a slight change in boundary conditions, in particular:
[ T iy 3!Ilm

PQe) + PGy, =0, ¥ as =0, -

=0, m=0,1,2, . . . (5)
95

1f ﬁ; is a solution to (5), it directly follows that @; is also a solution
of (4), and vice versa (i.e., equation (4) = @m 38 = constant, without loss of

generality assume constant = 0). Therefore, it is sufficient to focus our
attention on equation (5), which in detail is given by

VAAY_ + ¥ V. + BV - Ay O - Ay, + P(y.) =0
m my m m, my m Yo, wmx my m

With

¥y (3S) = 0, (38) =0, m=0,1,2,

Yoy,

..,],m % f (;(q,my “’x Aw%(fpmy - Awmyﬁmx - wmxAimy)ds + %fspc ds (6)
where G 1s the Green's function of the biharmonic Equation (3]

AAG = 0 in S, with ¢(3S) =0 , ¢n(35) =0
Lemma :

(6) = (5)
Proof. D




For convenience and clarity, equation (6) will be expressed in the form: .
Vo= Al Y+ f(wm)' (6) .
where '
AGOL ] =3 J; Slha, 81 1y + b [ 1y - bug [ ], = v 11 )de
:
and .
£Qy,) = % fs P(wm)G ds .

Lemma: If the hypothesis of theorem 1 of reference 1 is satisfied, then there
exists a solution w; of equation (6) for all m and

n
v* = im0 U - v

0
n*o i=o

where y* 1s the unique of equation (2).

Theorem: Under the condition of the above lemma, @; is a solution to the
Fredholm Integral Equation of the second kind

ba(x'ay') + Is V(LYK ('Yt ax,y)dx dy = £00) (x',y") )

where

Kp(x',y',x,y) = —AGy(x'.y',x,y)wmx(x,y) + Awamy + 2[%xy<%wmxx + wmyy)]

+ Vi (Gey = Cyy)

Proof: Since @: will be a solution of (6) under the hypothesis, it is suffi-
cient to show that a solution to (6) is alos a solution of (7). For clarity,
denote (6) in the form

v - AV = £(v,)
or equivalently,

vr - % j; c(w,,y Atb: + Awoxw; - Awoyw; - w°x Aw;)ds = £(v,) 1
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By Green's Lemma

. -j f A(Gw )w* dx dy
: S 3 oy/ "%

P = J. *
s A(Gwo )w ds - [A(cwo ]w*
v ..a y X Yy
. f A(Gwo ) v* ds
. S Y'x . :
-I G ay, v* ds +f(c Ay ) v* ds |
S °x y S . °x y
+f G 8y, w; ds -f(c 8y, ) v* ds
S y S yix

’ +f Gv, Ay ds = -f A(cwo )w* ds
S y X’y

{ Therefore (6) reduces to

o+l f{["“(c‘” )]w‘ S N T A W (PO )v*}ds - £Gy)
S y'x X/y ¥ Y%

y
et L oBln), ) - olon,) - 6 ) Jo e
s y/x x’y X’y ¥ix
[A(Gwo ) + (c 8, ) - A(G% ) - (G 8y, ]
¥Y/x X’y X’y ¥Y'x

ARG,V + Gy )-G Ay - G ay
yro Oy b oy o

cwoy Avy dx dy

3S

- A(wao + Gy, ) + Gy by, + G By,
y xy x

Xy Yy

S e R TN

-A(Gw - G ¥ )+(G Ay -G AW)
xoy y¥o y “Yo x oy

o) - )+ ()
xoy xonx xoy

yy

.
e

)

- (Fxxwoy + waoy)x * (nywby + cx"’oyy y

] =G +C +G +G +2(c W +G )
‘ xxxwoy xVo %Yo xyy“’oy xx"oxy xy“’oyy

yyy xxy




ayse) - rt) - o)

- (.ny%x - Gywoxx)x + ("cyy“’ox = G”%xy)y

= “Cxxy¥o, ~ Gybo, " 265y%y = Gy¥o = Cyyybo - 2yytq

v
XX xy

* A(G¢ = Gyv )=ZG (w -V )+2w '(G -G )+c(w )-c Ay
X °y A Xy °yy %% °xy p 94 Yy x oy y 0

+ ¥, 4G, - ¥, &G

y x 7

.‘.A(cw -cw)+(c A, -G Aw)
xoy yro, y 0y x oy

- Z[ny(%yy - woxx) + wuxy(cxx - cyy)] * o 80y - v 4G, |

Therefore, (6) reduces to

Hence, (6) = (7).
CONCLUSION

Therefore, under the conditions as cited, the sequence of solutions
generated by (7) converge to .the solution w* of (1) in the following sense:

n-1 -

.-*8 -
EE% Vi =,

i = vt -,

oMa

Therefore, .




. Hence the original problem, equation (1), which falls within the frame-
work of nonlinear operator theory, an area that little is known, has been
replaced by equation (5), which falls within the framework of bounded linear

¢ operator theory, an area for which there exists a vast wealth of information.
Of course, it could be argued that it is theoretically passible that the
sequential representation of the solution converges so slowly that the results
are of questionable value. However, from all indications this will not be a
problem, for as pointed out in reference 1, there are parameters at one's

, . disposal in the method that can be adjusted to speed up the rate of conver-

{ . gence; 1in fact it was demonstrated in reference 2 that by judicious selection

£ of the variable parameters available they were able to get numerically adequate
i . convergence with just a few iterations.
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